
	
		
			
			 wissel.net
			
					Home
	Blog
	Series
	Downloads
	Presentations
	About / Imprint

				
					
						
						
					

				

			

		

	

	
 		

		
			
				wissel.net

				Usability - Productivity - Business - The web - Singapore & Twins

			

		

 	Blog /
	2012 /
	April
	
 |Show-N-Tell Thursday

	
 |XPages

	
	|SHWL-8TNLTV
	

		
			
							
				This article is part of a mini series. Read them all:

				Extracting data from Domino into PDF using XSLT and XSL:FO

					Extracting data from Domino into PDF using XSLT and XSL:FO (Part 1)
	Extracting data from Domino into PDF using XSLT and XSL:FO (Part 2)
	Extracting data from Domino into PDF using XSLT and XSL:FO (Part 3)
	Extracting data from Domino into PDF using XSLT and XSL:FO (Part 4)
	Extracting data from Domino into PDF using XSLT and XSL:FO (Part 5)

			
	

					LotusScript LSI_INFO potentially harmful on (64Bit) Domino
						|
	Main

|
						Extracting data from Domino into PDF using XSLT and XSL:FO (Part 3)
					

				
					Extracting data from Domino into PDF using XSLT and XSL:FO (Part 2)

					

					This entry is part of the series Domino, XSL:FO and XSLT that dives into the use of XSLT and XSL:FO in IBM Lotus Domino.

 In Part 1 I discussed the process of getting data from Domino to PDF using only open standards. In this part I want to start backwards: If I have valid XSL:FO, how do I get the PDF output? In a later installment I will discuss what XSL:FO is capable of and how to create it using XSLT. Finally I will discuss how to extract XML from your data source (Domino or others).

 I choose the backwards approach since it is easier to understand walking from the desired output towards a stylesheet than creating a stylesheet if the result isn't clear. Bear with me for this approach.

 I will use Apache FOP as my rendering engine. The Quickstart compresses the needed steps neatly into 1-2-3 (pun intended):
	Download

 This is the easy part. Pick one of the mirror servers and get fop-1.0-bin.zip (24M) - check if you read this later if there is a newer version. Extract it to a directory of your choice, we will import/copy what we need from there
	Configure

 You have choices:
 	copy the Fop files into jvm/lib/ext (bad idea)
	import it into an NSF (twice: once for agents, once for XPages)
	create a plug-in (good for sidebar and XPages, not good for agents)

 Having coined the term XAgent I will stick to the XPages version with import into the NSF. Time permitting I'll add a plug-in approach to this little series.
	Run

 The FOP website provides a good overview on general Java use as well as servlet specifics. Using that information as template it is not too hard to implement a managed bean that takes a XMLDocument and an optional Stylesheet and returns the rendered PDF as result

 Since our output will be rendered by a managed bean, we need to configure it in the faces-config.xml:

 <faces-config>

 <managed-bean>

 <managed-bean-name>PDF </managed-bean-name>

 <managed-bean-class>com.notessensei.fop.PDFReport </managed-bean-class>

 <managed-bean-scope>session </managed-bean-scope>

 </managed-bean>

<faces-config>

 The XAgent follows the usual pattern:

 var exCon = facesContext. getExternalContext () ;

var response = exCon. getResponse () ;

var out = response. getOutputStream () ;

 response. setContentType ("application/pdf") ;

 response. setHeader ("Content-disposition" , "inline; filename=result.pdf") ;

 response. setHeader ("Cache-Control" , "no-cache") ;

// In this example the text in sessionScope.longText will be rendered

var written = sessionScope. longText != "" ? "<text>" +sessionScope. longText + "</text>" : null ;

// Writes the default rendering out

 PDF. fopReportFromString (out ,written , null) ;

// Stop the page from further processing;

 facesContext. responseComplete () ;

 out. close () ;

 To get the Java class working I needed to import:
	avalon-framework-4.2.0.jar
	batik-all-1.7.jar
	commons-io-1.3.1.jar
	fop.jar
	serializer-2.7.0.jar
	xmlgraphics-commons-1.4.jar

 The class for the PDFReport contains just some wrapper code to render "FO" or "XML with XSLT" into a PDF. It is demo code, you want to add more robust error handling. Next stop: more about FO

 As usual YMMV.

					

					
						Posted by
Stephan H Wissel on 26 April 2012
|
Comments (2)
|
categories: Show-N-Tell Thursday XPages

						
					

				
				
				
				
		 Add your comment...
	
	

				

				
					Comments

						
							posted by Jeroen on Wednesday 14 August 2013 AD:

 I have been using FO to make PDF's since Notes version 5. Nowadays it is a servlet which enables you to post either a document reference or the raw data. The hard work is not so much the (java) code. It is the XSLT!!

							

						
	
							posted by Stephan H Wissel on Wednesday 14 August 2013 AD:

 @Jeroen I 100% agree. The pattern matching way of XSLT and FO are the real challenges.

If all you have done in your development is objects and functions, it can drive you mad. This is why a good debugger is gold (see also Part5)

							

						

				

					LotusScript LSI_INFO potentially harmful on (64Bit) Domino
						|
	Main

|
						Extracting data from Domino into PDF using XSLT and XSL:FO (Part 3)
					

			

		

			Blog /
	2012 /
	April
	
 |Show-N-Tell Thursday

	
 |XPages

	
	|SHWL-8TNLTV
	

	

	
		
			
				
					About Me

					
						I work as "Solution Director Innovation" for HCL Software. I'm based in Singapore.
						
					

					
					
				
				

				
					Contact

						Chat on Mastodon
	LinkedIn
	NotesSensei's Spreadshirt shop
	Stickers from Stickermule
	About Me
	GitHub
	Bitbucket
	Twitter

				

				
					Disclaimer

					This site is in no way affiliated, endorsed, sanctioned,
						supported, nor enlightened by my current or previous employers.
						I may be an employee, but the opinions, theories, facts, etc.
						presented here are my own and are in now way given in any official
						capacity. In short, these are my words and this is my site, not
						my current or former employers' - and don't even begin to think otherwise.

					
						© 2003 - 2023 Stephan H. Wissel - some rights reserved as
						listed here:
						Unless otherwise labeled by its originating author, the content
						found on this site is made available under the terms of an Attribution/NonCommercial/ShareAlike
							Creative Commons License, with the exception that no rights are
						granted -- since they are not mine to grant -- in any logo,
						graphic design, trademarks or trade names of any type. Code
						samples and code downloads on this site are, unless otherwise
						labeled, made available under an Apache
							2.0 license. Other license models are available on written
						request and written confirmation.
					

				

			

		

	

	
		
	
	

	
	
	
	

		
	
	

	
	
	

